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On the Statistical Mechanics and Surface Tensions of
Binary Mixtures

J. De Coninck,1 S. Miracle–Solé,2 and J. Ruiz2
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Within a lattice model describing a binary mixture with fixed concentrations of
the species we discuss the relationship between the surface tension of the mix-
ture and the concentrations.
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1. INTRODUCTION

The notion of surface tension, or interfacial free energy per unit area,
plays a key role in many studies concerning the surface phenomena and
the phase coexistence.

When we consider a solid or a fluid, which is a mixture of two chem-
ical species 1 and 2, in equilibrium with its vapor, one of the problems,
experimentally as well as theoretically, is to determine how the correspond-
ing surface tension depends on the composition of the mixture.

Some relationship is expected which would give this surface tension,
here denoted τ(1,2)|0, as an interpolation between the two surface tensions,
τ1|0 and τ2|0, of each of the species when they are chemically pure.

Using thermodynamical considerations several equations have been
derived in the literature, according to different assumptions.

Thus, for ideal or nearly ideal solutions, a fairly simple treatment, due
to Guggenheim,(1) leads to the following equation

e−βa
2τ(1,2)|0 = c1e

−βa2τ1|0 + c2e
−βaτ2|0 , (1.1)
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where c1 is the fixed molar fraction of species 1 in the (1,2) mixture, c2 =
1 − c1, the fixed molar fraction of species 2, a2 is the mean surface area
per molecule, and β=1/kT is the inverse temperature.

A very simple relationship for the so-called regular solutions comes
from Defay and Prigogine,(2) who proposed the equation

τ(1,2)|0 = c1τ1|0 + c2τ2|0 −Kc1c2 (1.2)

with K a semiempirical constant.
A simple treatment due to Eberhart(3) assumes that the surface ten-

sion of a binary solution is linear in the surface composition, that is

τ(1,2)|0 = cs1τ1|0 + cs2τ2|0, (1.3)

where the csi , i= 1,2, denote the mole fraction near the surface of phase
separation, and that the ratio cs1/c1 is proportional to the ratio cs2/c2.

Finally, when the surface tensions τ1|0 and τ2|0 differ appreciably, a
semiempirical equation attributed to Szyszkowsky(4,5) gives:

τ(1,2)|0
τ1|0

=1−B ln
(

1+ c2

A

)
, (1.4)

where two characteristic constants A and B of the compounds have been
used, and c2 is the concentration of the species with the smaller surface
tension.

We refer the reader to Adamson’s book(6) (Chapter III, Section 4),
and references therein, for a detailed discussion of the above equations.
On the other hand, an extensive development for various types of nonideal
solutions that has been made by Defay et al.,(7) can be found in their
monography.

More recently, an interface model with a two-valued random interac-
tion was introduced by two of the present authors in ref. 8 to describe the
phase boundary from a microscopic point of view. The surface tension for
that model could be computed according to a quenched or annealed dis-
order and one obtains

τ
quenched
(1,2),0 = c1τ1,0 + c2τ2,0,

e
−βτ annealed

(1,2)|0 = c1e
−βτ1,0 + c2e

−βτ2,0

in agreement with the above Eq. (1.1) or (1.3).



Statistical Mechanics and Surface Tensions 599

The aim of the present paper is to discuss the problem within a lattice
bulk statistical mechanical model describing the binary mixture in equilib-
rium with its vapor. Previous studies of various models of binary lattice
gases can be found in refs. 9 and 10.

Here, we consider a lattice gas system with two kinds of particles,
where each lattice site can be in one of the three states, 0,1, and 2, inter-
preted, respectively, as an empty site, a site occupied by a particle of the
first kind of the model, and a site occupied by a particle of the second
kind. Whenever the particles 2 are not allowed the system reduces to the
usual Ising model, in its lattice gas version, with coupling constant J1/2.
We consider the system in the phase coexistence region and denote by
τ1|0 the corresponding surface tension between the dense and the dilute
phases. Analogously, when particles 1 are not allowed, it reduces to the
Ising model with coupling constant J2/2 and we let τ2|0 be the corre-
sponding surface tension.

We can also study our three state model in the phase coexistence
region (with the help of Pirogov Sinai theory) and then interpret the dense
phase as the binary mixture, the dilute phase as the corresponding vapor,
and τ(1,2)|0 as the surface tension between these two phases. On the other
hand the concentration of particles 1 and 2 in the dense phase can be
fixed to take any given values.

As a main result of this paper we prove that, at low temperatures, the
following equation holds, for the surface tension of our model

e−β(τ(1,2)|0−F)= c∗1e−β(τ1|0−F1)+ c∗2e−β(τ2|0−F2) . (1.5)

Here Fi , (i = 1,2) is the specific free energy of the gas of “jumps”
describing the Gallavotti’s line of phase separation for the Ising model
in two-dimensions,(11) and that of the gas of the “walls” describing the
Dobrushin’s microscopic interface(12) in three-dimensions. This means that
τ1|0 − F1 = J1 and τ2|0 − F2 = J2 are the respective energy costs per unit
length or unit area of the 1|0 and the 2|0 interfaces. The quantity F is
the specific free energy (which can be expressed as a convergent series at
low temperatures) of a gas of some geometrical objects called aggregates.
In dimension d=2, those aggregates are the natural generalizations to our
model of the jumps of Gallavotti’s line and the leading term of the series
giving this free energy F is

− 2
β

c∗1e
−2βJ1 + c∗2e−2βJ2

c∗1e−βJ1 + c∗2e−βJ2
.
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In dimension d=3, they are the natural generalizations of the walls of the
Dobrushin’s interface and then the leading term of the series is

− 1
β

c∗1e
−5βJ1 + c∗2e−5βJ2

c∗1e−βJ1 + c∗2e−βJ2
− 1
β

(c∗1e
−2βJ1 + c∗2e−2βJ2)4

(c∗1e−βJ1 + c∗2e−βJ2)4
.

The coefficients c∗1 and c∗2 are related to the concentrations c1 and c2 of
the particles 1 and the particles 2 through Eq. (5.7). This equation gives
at low temperatures:

c∗i = ci

[
1− (c1e

−βJ1 + c2e
−βJ2

)2d −2dcie−βJi
(
c1e

−βJ1 + c2e
−βJ2

)2d−1

−2(d+1)ci
(
c1e

−βJ1 + c2e
−βJ2

)2d +O(e−(2d+1)βmin{J1,J2})
]

(1.6)

for i=1,2.
The paper is organized as follows. The model is defined in Section 2

which also provides the analysis of the ground states of the system.
Section 3 is devoted to the study of the Gibbs states of the system at low
temperatures and of the coexistence between the mixture and the vapor.
Section 4 contains the definitions of the surface tensions and an expan-
sion of the surface tension between the mixture and the vapor in terms of
interfaces. Section 5 contains the presentation of the relationship between
surface tensions. The proofs are given in Sections 6 and 7.

2. THE MODEL

We consider a cubic lattice Z
d , of dimension d=2,3, and to each site

Z
d we associate a variable sx which taking values in the set �= {0,1,2}

specifies one of the possible three states of the system at each lattice site.
We say that the site x is empty if sx =0 and that is occupied by a particle
of kind 1 or of kind 2 if sx =1 or 2. The following Hamiltonian

H =−
∑
〈x,y〉

2∑
α=0

2∑
β=0

Eαβδ(sx, α)δ(sy, β), (2.1)

where 〈x, y〉 denote nearest–neighbor pairs, δ is the usual Kronecker sym-
bol, δ(s, s′)= 1 if s= s′ and δ(s, s′)= 0 otherwise, and Eαβ =Eβα are the
coupling constants, is of the form of the Blume–Emery–Griffiths model(13)
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which describes a general three state lattice system for the case of nearest–
neighbor interactions. We shall assume here that

2E12 =E11 +E22 (2.2)

in order to ensure that particles of kinds 1 and 2 could be mixed arbi-
trarily without any cost of energy. When these identities are not satisfied
two new thermodynamic phases, either rich in particles of kind 1 or in
particles of kind 2, may appear as equilibrium states of the system.

With the assumption of hypothesis (2.2) the general Hamiltonian (2.1)
can be reduced to the form

H =
∑
〈x,y〉

[
J1
(
δ(sx,1)δ(sy,0)+ δ(sx,0)δ(sy,1)

)

+J2
(
δ(sx,2)δ(sy,0)+ δ(sx,0)δ(sy,2)

)]
(2.3)

that is, the case in which the coupling constants satisfy E10 =E01 = −J1,
E20 =E02 = −J2 and Eαβ = 0 otherwise. Furthermore, we assume that J1
and J2 are positive constants.

In order to see this fact we consider, as it is often convenient, the
reformulation of the three state lattice system in the language of a mag-
netic system of spin one. To do so, we define the spin variable σx at the x
site via

δ(sx,0) = 1−σ 2
x ,

δ(sx,1) = σx(σx +1)/2, (2.4)

δ(sx,2) = σx(σx −1)/2

so that σx = 0,1,−1 corresponds to the presence at site x of the state
0,1 or 2, respectively. In terms of the spins, the general Hamiltonian (2.1)
takes the form

H =
∑
〈x,y〉

J (σx −σy)2 −Kσ 2
x σ

2
y −C(σxσ 2

y +σ 2
x σy)

−
∑
x

(Aσx +Bσ 2
x ). (2.5)
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The pair interactions of the system are given by

E11 +E22 −2E12 = 8J ,
E11 +E00 −2E01 = 2J +K+2C, (2.6)

E22 +E00 −2E02 = 2J +K−2C.

The last two terms can be treated as chemical potentials, with

A=d(E01 −E02) and B =d(E01 +E02 −2E00 −2J ).

We see that our hypothesis (2.2) implies

J =0. (2.7)

On the other hand, taking into account that

2δ(σx,1)δ(σy,0) = σx(σx +1)(1−σ 2
y )=σ 2

x +σx −σxσ 2
y −σ 2

x σ
2
y ,

2δ(σx,−1)δ(σy,0) = σx(σx −1)(1−σ 2
y )=σ 2

x −σx +σxσ 2
y −σ 2

x σ
2
y ,

we obtain Hamiltonian (2.3), plus chemical potential terms, with

2J1 =K+2C, 2J2 =K−2C. (2.8)

We notice that condition (2.7) excludes the models discussed in the
above mentioned refs. 9 and 10. In ref. 10, Lebowitz and Gallavotti have
considered the cases 2J = −K > 0, C = 0, also studied by Wheeler and
Widom,(9) and J > 0, K = C = 0, usually known as the Blume–Capel
model. They prove then the appearance at low temperatures of two phases,
respectively reach in particles of kind 1 or of kind 2. When the two phases
coexist one has, as a consequence of the condition C = 0, the equality
between the two surface tensions τ1|0 and τ2|0. These models, therefore,
would not be appropriate for the present study. The case C �=0 (and J >0)
will be briefly commented in Section 5.

Let us now return to the discussion of Hamiltonian (2.3). Fixed den-
sities of the three species are introduced through the canonical Gibbs
ensemble of configurations s�={sx}x∈� in a finite box �⊂Z

d , such that

∑
x∈�

δ(sx,0)=N0,
∑
x∈�

δ(sx,1)=N1 and
∑
x∈�

δ(sx,2)=N2. (2.9)
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Here N0, N1 and N2 are nonnegative integers satisfying N0 +N1 +N2 =|�|
where |�| denotes the number of sites of �. The associated partition func-
tions with boundary condition bc are given by

Zbc(�;N1,N2) =
∑

s�∈��
e−βH�(s�)δ

(∑
x∈�

δ(sx,1),N1

)

×δ
(∑
x∈�

δ(sx,2),N2

)
χbc(s�), (2.10)

where H�(s�) is the Hamiltonian (2.3) with the sum over nearest–neigh-
bors pairs 〈x, y〉⊂� and χbc(s�) is a characteristic function standing for
the boundary condition bc. We shall be interested in particular to the fol-
lowing boundary conditions:

• the empty boundary condition: χ emp(s�)=
∏
x∈∂� δ(sx,0);

• the mixture boundary condition: χmixt(s�)=
∏
x∈∂�(1− δ(sx,0));

• the free boundary condition: χ fr(s�)=1.

Hereafter, the boundary ∂� of the box � is the set of sites of � that have
a nearest–neighbor in �c=Z

d \�.
We define the free energy per site corresponding to the above ensem-

ble as a function of the densities ρ1 and ρ2 of the particles 1 and 2:

f (ρ1, ρ2)= lim
�↑Zd

− 1
β|�| lnZbc(�; [ρ1|�|], [ρ2|�|]), (2.11)

where [ · ] denotes the integer part and the thermodynamic limit �↑Z
d is

taken in the van Hoove sense.(14)

We introduce also a grand canonical Gibbs ensemble, which is conju-
gate to the previous ensemble, and whose partition function, in the box �
is given by

�bc(�;µ1,µ2)=
∑

s�∈��
e−βH�(s�)+µ1

∑
x∈� δ(sx ,1)+µ2

∑
x∈� δ(sx ,2), (2.12)

where the real numbers µ1 and µ2 replace as thermodynamic parameters
the densities ρ1 and ρ2. We define the corresponding specific free energy,
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the pressure, as the limit

p(µ1,µ2)= lim
�↑Zd

1
|�| ln�bc(�;µ1,µ2). (2.13)

The equivalence of the two above ensembles is expressed in the following
theorem.

Theorem 1. Limits (2.11) and (2.13), which define the above free
energies, exist. They are convex functions of their parameters and are
related by the Legendre transformations

p(µ1,µ2) = sup
ρ1,ρ2

[µ1ρ1 +µ2ρ2 −βf (ρ1, ρ2)], (2.14)

βf (ρ1, ρ2) = sup
µ1,µ2

[µ1ρ1 +µ2ρ2 −p(µ1,µ2)]. (2.15)

Proof. We consider two parallelepipedic boxes �′ and �′′ of both
the same size and paste them to form a parallelepipedic box �=�′ ∪�′′
in such a way that �′ ∩�′′ =∅ and each site of some side of �′ is a near-
est–neighbor of a site of a side of �′′. It is easy to see that the following
sub-additivity property holds:

Zemp(�;N ′
1 +N ′′

1 ,N
′
2 +N ′′

2 )�Zemp(�
′;N ′

1,N
′
2)Zemp(�

′′;N ′′
1 ,N

′′
2 ).

The same property is shared by the partition function with mixt bound-
ary conditions. Then the statements of the theorem follow from standard
arguments in the theory of the thermodynamic limit.(14)

We next introduce the finite volume Gibbs measures (a specification)
associated with the second ensemble:

P
bc
� (s�)=

e−βH̃�(s�)χbc(s�)
�bc(�;µ1,µ2)

, (2.16)

where

H̃�(s�)=H�(s�)− µ1

β

∑
x∈�

δ(sx,1)− µ2

β

∑
x∈�

δ(sx,2). (2.17)

They determine by the Dobrushin–Landford–Ruelle equations the set of
Gibbs states Gβ(H̃) on Z

d corresponding to the Hamiltonian H̃ at inverse
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temperature β (see ref. 15). If a Gibbs state P ∈ Gβ(H̃) happens to equal
the limit lim�↑Zd P

bc
� (·), we shall call it the Gibbs state with boundary

condition bc.
In the zero temperature limit the Gibbs state with empty boundary

condition is concentrated on the configuration with empty sites:

lim
β→∞

P
bc
� (emp�)=1, (2.18)

where emp� is the configuration where all the sites of � are empty, and
this limit vanishes for any other configuration. Gibbs states at β=∞ will
be called ground states.

Let

Rmixt
� ={s ∈�� :∀x ∈�, sx �=0

}
(2.19)

be the restricted ensemble of configurations in � with non empty sites, and
Rmixt
� (c), 0�c�1 the subset of configurations of Rmixt

� with exactly [c|�|]=
N sites occupied by a particle of the specie 1 (and |�|− [c|�|] sites occu-
pied by a particle of the specie 2). The number of configurations Rmixt

� (c)

equals the binomial coefficient
(|�|
N

)
.

With the mixture boundary conditions one has

lim
β→∞

P
mixt
� (s�)= eµ1[c|�|]eµ2[(1−c)|�|]

(eµ1 + eµ2)|�| for each s� ∈Rmixt
� (c) (2.20)

and

lim
β→∞

P
mixt
� (Rmixt

� (c))=
(|�|
N

)
eµ1Neµ2(|�|−N)

(eµ1 + eµ2)|�| , (2.21)

while this limit vanishes for those s� �∈ Rmixt
� (the denominator in (2.20)

and (2.21) is the sum
∑|�|
N=0 of the numerator of the R.H.S. of (2.21)).

Notice that all configurations s� ∈ Rmixt
� (c) have the same probability.

Moreover, by Stirling’s approximation one has for large |�| that
( |�|

[c|�|]
)≈[(

1
c

)c (
1

1−c
)1−c]|�|

, and the maximum of eµ1c/(eµ1 + eµ2) is reached for

c= eµ1

eµ1 + eµ2
. (2.22)
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Fig. 1. The diagram of ground states.

The principle of maximal term gives that, for such values (2.21)
tends to 1 in the thermodynamic limit. This means that the ground state
with mixt boundary conditions is concentrated on the restricted ensemble
Rmixt(c) of configurations of non empty sites with concentration c of par-
ticles 1 and concentration 1− c of particles 2.

With free boundary conditions, one has

lim
β→∞

P
fr
�(emp�) = 1

1+ (eµ1 + eµ2)|�| , (2.23)

lim
β→∞

P
fr
�(R

mixt
� (c)) =

( |�|
[c|�|]

)
eµ1|�|eµ2[(1−c)|�|]

1+ (eµ1 + eµ2)|�| , (2.24)

Thus, with the above considerations, we get that for eµ1 +eµ2 =1, the con-
figuration with empty sites coexists with the restricted ensemble Rmixt(c).
The diagram of ground states is shown in Fig 1.

In the next section, we extend this analysis to low temperatures.

3. COEXISTENCE BETWEEN THE MIXTURE AND THE VAPOR

To extend the analysis of the previous section to the Gibbs states at
low temperatures, we will express the partition functions (2.12) with empty
and mixt boundary condition in term of contour models.
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Let us first introduce the notions of contours by the following defini-
tions.

Consider a configuration s� with empty sites on the boundary ∂�

(sx = 0 for all x ∈ ∂�). We define the boundary B(s�) as the set of pairs{
sx, sy

}
such that sx �= 0 and sy = 0. To a nearest–neighbor pair 〈x, y〉 let

us associate

(a) in dimension 2, the unit bond (dual bond) bxy that intersects the
bond xy in its middle and orthogonal to xy;

(b) in dimension 3, the unit square (dual plaquette) pxy that inter-
sects the bond xy in its middle and orthogonal to xy.

Two pairs
{
sx, sy

}
and {sz, st } of B(s�) are said adjacent if one of the two

conditions is fulfilled

(i) the dual bonds bxy and bzt (respectively, the plaquettes pxy and
pzt ) are connected;

(ii) x = z, sx = sz �= 0, sy = st = 0, and the bond xy with endpoints x
and y is parallel to the bond with endpoints z and t .

A subset B of B(s�) is called connected if the graph that joins all adja-
cent pairs of B is connected. It is called contour of the configuration s�
if it is a maximal connected component of B(s�) (see Fig. 2).

Fig. 2. A configuration with two contours: the two rectangles on the left belong to the
same contour due to the condition (ii) of adjacency.
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The boundary and the contours of a configuration s� with occupied
sites on the boundary of � are defined in the same way.

A set � of pairs
{
sx, sy

}
such that sx �=0 and sy =0 is called contour

if there exists a configuration s� such that � is a contour of s�. We use
Sα(�) to denote the set of sites for which sx =α. The set supp �=S0(�)∪
S1(�)∪S2(�) is called support of the contour �. We will also use S(�)=
S1(�) ∪ S2(�) to denote the set of occupied sites of the contour, L1(�)

(respectively, L2(�)) to denote the number of nearest–neighbor pairs 〈x, y〉
such that sx = 1 and sy = 0 (respectively, sx = 2 and sy = 0) and L(�)=
L1(�)+L2(�).

Consider the configuration s� having � as unique contour. The differ-
ence � \ S(�) splits in components (set of sites for which the graph that
joins all nearest–neighbor pairs is connected) with either all occupied sites
or all empty sites. The component that contains ∂�, denoted Ext� � is
called exterior of the contour. When s� has empty sites (respectively, occu-
pied sites) on its boundary, � is called emp-contour (respectively, mixt-
contour). The interior of the contour is the set Int �=�\ (S(�)∪Ext� �).
It is the union of the components of Intemp � with empty sites with the
components of Intmixt � with occupied sites. Finally V (�)=S(�)∪ Int �.

Two contours �1 and �2 are said compatible their union is not con-
nected. They are mutually compatible external contours if furthermore
V (�1)⊂Ext� �2 and V (�2)⊂Ext� �1.

With these definitions one gets the following expansions of the grand
canonical partition functions

�emp(�;µ1,µ2) =
∑

{�1,...,�n}ext

n∏
i=1

ω(�i)�emp(Intemp �i;µ1,µ2)

×�mixt(Intmixt �i;µ1,µ2),

(3.1)

�mixt(�,µ1,µ2) =
∑

{�1,...,�n}ext

(eµ1 + eµ2)|�\∪n
i=1V (�i)|

×
n∏
i=1

ω(�i)�emp(Intemp �i;µ1,µ2)

×�mixt(Intmixt �i;µ1,µ2), (3.2)

where the first sum is over families of mutually external emp–contours, the
second sum is over families of mutually external mixt–contours, and

ω(�)= e−βJ1L1(�)−βJ2L2(�)+µ1|S1(�)|+µ2|S2(�)|. (3.3)
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We put

gemp =0, gmixt = ln(eµ1 + eµ2), gmax =max{gemp, gmixt}. (3.4)

We divide in (3.1) each �mixt by �emp and multiply it back again in the
form (3.1). Continuing this process, and doing an equivalent procedure
with (3.2), these relations lead to the following expansion for the partition
functions with boundary condition q= emp or q=mixt.

�q(�;µ1,µ2)= egq |�| ∑
{�1,... ,�n}comp

n∏
i=1

zq(�i), (3.5)

where the sum is now over families of compatible q-contours and the
activities zq(�) of contours are given by

zq(�)=ω(�)e−gq |S(�)|�m(Intm �;µ1,µ2)

�q(Intq �;µ1,µ2)
, (3.6)

where m �=q.
The (generalized) Peierls estimates

ω(�)e−gmax|S(�)| � e−βJL(�), (3.7)

where J = min{J1, J2}, allow us to have a good control of the behavior
of our system at low enough temperatures using Pirogov–Sinai theory.(16)

Choosing the Zahradnik’s formulation of that theory,(17) we introduce to
state our results, the following

Definition 1. For q = emp and q = mixt we define the truncated
activity

z′q(�)=
{
zq(�) if zq(�)� e−αL(�),
e−αL(�) otherwise,

where α is some positive parameter to be chosen later (see Theorem 2).

Definition 2. The q–contour � is called stable if

zq(�)� e−αL(�), (3.8)

i.e. if zq(�)= z′q(�).
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We define the truncated partition function �′
q(�) as the partition

function obtained from (3.5) by leaving out unstable contours, namely

�′
q(�;µ1,µ2)= egq |�| ∑

{�1,... ,�n}comp

n∏
i=1

z′q(�i). (3.9)

Here the sum goes over compatible families of stable q–contours. Let

pq(µ1,µ2)= lim
�↑Zd

1
|�| ln�′

q(�;µ1,µ2) (3.10)

be the meta-stable pressure associated with the truncated partition function
�′
q(�;µ1,µ2).

For α large enough the thermodynamic limit (3.10) can be controlled
by a convergent cluster expansion.

Namely, to exponentiate the truncated partition function, we intro-
duce multi-indexes X as functions from the set of contours into the
set of nonnegative integers (see refs. 18 and 19). We let supp X =
∪�:X(�)�1supp � and define the truncated functional

�q(X)= a(X)∏
� X(�)!

∏
�

zq(�)
X(�), (3.11)

where the factor a(X) is a combinatoric factor defined in terms of the
connectivity properties of the graph G(X) with vertices corresponding to
� with X(�)� 1 (there are X(�) vertices for each such �) that are con-
nected by an edge whenever the corresponding contours are incompatible).
Namely, a(X)=0 and hence �q(X)=0 unless G(X) is a connected graph
in which case X is called a cluster and

a(X)=
∑

G⊂G(X)
(−1)|e(G)|. (3.12)

Here the sum goes over connected subgraphs G whose vertices coincide
with the vertices of G(X) and |e(G)| is the number of edges of the graph
G. If the cluster X contains only one contour, then a(X)=1.

Note that the number of contours � with |S(�)|= s, L(�)=n, whose
support contains a given site can be bounded by 2sνnd where ν2 = 4 and
ν3 =142.
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As a result of standard cluster expansion we get that for κe−α < 1,

where κ=2νdκcl and κcl ≡
√

5+3
2 e

2√
5+1 is the cluster constant:(20)

ln �′
q(�;µ1,µ2) = gq |�|+

∑
X:suppX⊂�

�q(X) (3.13)

= gq |�|+ |�|
∑

X:suppX�x

�q(X)

|supp X| +σ(� |�q), (3.14)

where

σ(� |�q)=−
∑

X:suppX∩�c �=∅

|suppX∩�|
|supp X| �q(X). (3.15)

In addition (see Section 6):

∑
X:suppX�x

∣∣�q(X)
∣∣ � κe−α, (3.16)

∣∣σ(� |�q)
∣∣ � κe−α |∂�| , (3.17)

giving

pq(µ1,µ2)=gq +
∑

X:supp X�x

�q(X)

|supp X| . (3.18)

The following theorem shows that the low temperature phase diagram
of the model is a small perturbation of the diagram of ground states (see
Fig. 3).

Theorem 2. Assume β is large enough so that e−βJ+5 = e−α <
1

2(d+1)κ , then there exists a coexistence line ln(eµ
∗
1 + eµ

∗
2 )=O(e−2dβJ ) on

which all mixt-contours and all emp-contours are stable and such that:

�q(�;µ∗
1,µ

∗
2)=�′

q(�;µ∗
1,µ

∗
2). (3.19)

for both boundary conditions q = mixt and q = emp, and the pressure is
given by

p(µ∗
1,µ

∗
2)=pmixt(µ

∗
1,µ

∗
2)=pemp(µ

∗
1,µ

∗
2). (3.20)
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Fig. 3. Phase diagram at low temperature.

For any t >0

�mixt(�;µ∗
1 + t,µ∗

2 + t)=�′
mixt(�;µ∗

1 + t,µ∗
2 + t), (3.21)

p(µ∗
1 + t,µ∗

2 + t)=pmixt(µ
∗
1 + t,µ∗

2 + t)>pemp(µ
∗
1 + t,µ∗

2 + t)

and

�emp(�;µ∗
1 − t,µ∗

2 − t)=�′
emp(�, ;µ∗

1 − t,µ∗
2 − t), (3.22)

p(µ∗
1 − t,µ∗

2 − t)=pemp(µ
∗
1 − t,µ∗

2 − t)>pmixt(µ
∗
1 − t,µ∗

2 − t).

The proof is postponed to Section 6.
Whenever a cluster X contains only one contour � (X(�)= 1 and

X(�′)= 0 for �′ �=�) one has �q(X)= zq(�). From this property we get
that the metastable pressures read:

pmixt(µ1,µ2) = ln(eµ1 + eµ2)+ (e
µ1−βJ1 + eµ2−βJ2)2d

(eµ1 + eµ2)2d+1
+O(e−(2d+1)βJ ),

(3.23)

pemp(µ1,µ2) = eµ1−2dβJ1 + eµ2−2dβJ2 +O(e−(2d+1)βJ ). (3.24)
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Equalizing (3.23) with (3.24) gives the first term of the equation for the
coexistence line stated in Theorem 2.

Let us introduce the infinite volume expectation 〈 · 〉bc(µ1,µ2) associ-
ated to the Gibbs measure (2.16):

〈 · 〉bc(µ1,µ2)= lim
�↑Zd

∑

s�∈��
·Pbc
� (s�). (3.25)

As a consequence of the cluster expansion we have for any t�0:

〈δ(sx,1)+ δ(sx,2)〉mixt(µ∗
1 + t,µ∗

2 + t) = 〈1− δ(sx,0)〉mixt(µ∗
1 + t,µ∗

2 + t)
� 1−O(e−2dβJ ), (3.26)

〈δ(sx,1)+ δ(sx,2)〉emp(µ∗
1 − t,µ∗

2 − t) = 〈1− δ(sx,0)〉emp(µ∗
1 − t,µ∗

2 − t)
� O

(
e−2dβJ ), (3.27)

This shows that the model exhibits at low temperature a first-order phase
transition at the coexistence line where the pressure is discontinuous.

Let, ci= ∂pmixt(µ1,µ2)
∂µi

|µ1=µ∗
1,µ2=µ∗

2
, i=1, 2 be the density of the particle

i in the mixture regime, on the coexistence line, and let

di = ∂

∂µi

∑
X:supp X�x

�mixt(X)

|supp X|
∣∣∣∣
µ1=µ∗

1,µ2=µ∗
2

= 2deµ
∗
i −βJi (e

µ∗
1−βJ1 + eµ∗

2−βJ2)2d−1

(eµ
∗
1 + eµ∗

2 )2d+1

−(2d+1)eµ
∗
i
(eµ

∗
1−βJ1 + eµ∗

2−βJ2)2d

(eµ
∗
1 + eµ∗

2 )2d+2
+O(e−(2d+1)βJ )

for i=1, 2. One has

ci = eµ
∗
i

eµ
∗
1 + eµ∗

2
+di = eµ

∗
i

eµ
∗
1 + eµ∗

2
(1+ (eµ∗

1 + eµ∗
2 )di)

= eµ
∗
i

eµ
∗
1 + eµ∗

2

(
1+O(e−2dβJ )). (3.28)
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4. SURFACE TENSIONS

To introduce the surface tension between the mixture and the vapor,
we consider the parallelepipedic box:

V =VL,M =
{
(x1, .., xd)∈Z

d : |xi |�L, i=1, ..., d−1;−M�xd �M−1
}
.

Let ∂+V (respectively, ∂−V ) be the set of sites of ∂V with xd � 0 (respec-
tively, xd <0). We introduce the boundary condition

χmixt,emp(sV )=
∏

x∈∂−V
(1− δ(sx,0))

∏
x∈∂+V

δ(sx,0).

This boundary condition enforces the existence of an interface (see below
for its precise definition) between the mixture and the vapor. The interfa-
cial tension between the mixture and the vapor is defined by the limit

τmixt,emp = lim
L→∞

lim
M→∞

F(V )

(2L+1)d−1
, (4.1)

where

F(V )=− 1
β

ln
�mixt,emp(V ;µ∗

1,µ
∗
2)

(�mixt(V ;µ∗
1,µ

∗
2)�emp(V ;µ∗

1,µ
∗
2))

1/2
. (4.2)

This definition is justified by noticing that in this expression the volume
terms proportional to the free energy of the coexisting phases, as well as
the terms corresponding to the boundary effects, cancel and only the term
that takes into account the free energy of the interface is left.

To give a precise description of interfaces, we let L+ denotes the semi-
infinite lattice with xd � 0 and let L− = Z

d \ L+ denotes its complement.
Consider then a configuration s ∈�Z

d
, with empty sites on ∂+V and on

L+ \V and with occupied sites on a ∂−V and on L− \V . The boundary
B(s) (set of pairs

{
sx, sy

}
such that sx �= 0 and sy = 0) of such configura-

tion necessarily contains an infinite component I∞ whose support outside
the box V is the set of n.n. pairs between L+ and L−.

We call interface I the part of I∞ whose support lies inside the box
V : I∞ \I , is called extension of I (see Fig. 4). As it was done for contours,
we use Sα(I ) to denote the set of sites for which sx =α. The set supp I =
S0(I )∪S1(I )∪S2(I ) is called support of the interface I . We will also use
S(I)= S1(I ) ∪ S2(I ) to denote the set of occupied sites of the interface,
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Fig. 4. Interface of a configuration with the mixt, emp boundary condition.

L1(I ) (respectively, L2(I )) to denote the number of nearest–neighbor pairs
〈x, y〉 such that sx = 1 and sy = 0 (respectively, sx = 2 and sy = 0) and
L(I)=L1(I )+L2(I ).

The set V \ S(I) splits into a part D below the interface and a part
U above the interface: if one consider the configuration whose boundary
contains only the interface I , D is the subset of V \ S(I) with occupied
sites and U is the subset of V \S(I) with empty sites.

Then, the partition function, with mixed boundary conditions, can be
expanded over interfaces as follows

�mixt,emp(V ;µ∗
1,µ

∗
2)=

∑
I :supp I⊂V

ω(I)�mixt(D;µ∗
1,µ

∗
2)�emp(U ;µ∗

1,µ
∗
2),

(4.3)

where

ω(I)= e−βJ1L1(I )−βJ2L2(I )+µ∗
1|S1(I )|+µ∗

2|S2(I )|. (4.4)

Therefore,

e−βF(V )=
∑

I :supp I⊂V
ω(I)

�mixt(D;µ∗
1,µ

∗
2)�emp(U ;µ∗

1,µ
∗
2)

(�mixt(V ;µ∗
1,µ

∗
2)�emp(V ;µ∗

1,µ
∗
2))

1/2
. (4.5)
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Since �q(�;µ∗
1,µ

∗
2)=�′

q(�;µ∗
1,µ

∗
2) for both empty and mixt boundary

conditions, we get by (3.14 ) and (3.18)

�p(�;µ∗
1,µ

∗
2)= exp

{
pq |�|+σ(� |�q)

}
.

Applying this formula to the various partition functions of (4.5), and tak-
ing into account equations (3.20), we get:

e−βF(V ) =
∑

I :supp I⊂V
ω(I)e−p(µ

∗
1,µ

∗
2)|S(I)|+σ(D|�mixt)

+e+σ(U |�emp)− 1
2 σ(V |�mixt)− 1

2 σ(V |�emp). (4.6)

Let V c+ = (Zd \ V ) ∩ L+ and V c− = (Zd \ V ) ∩ L−. We then apply the for-
mula (3.15) to the four last terms of the exponent of the RHS of (4.6) and
rewrite the different contributions according to appropriated and natural
decompositions of the sets over which the sums take place and collecting
analogous terms. Before applying this formula it is convenient first to sum
over the clusters with same support. Thus we let

�̃mixt(C) =
∑

X:supp X=C
�mixt(X),

�̃emp(C) =
∑

X:supp X=C
�emp(X).

We then get

e−βF(V )= e−KV
∑

I :supp I⊂V
ω(I)e−p(µ

∗
1,µ

∗
2)|S(I)|A(I)BV (I), (4.7)

where

KV = 1
2

∑
C:C∩V c+�=∅
C∩V c−�=∅

�̃mixt(C)
|C∩V |

|C| + 1
2

∑
C:C∩V c+�=∅
C∩V c−�=∅

�̃emp(C)
|C∩V |

|C| , (4.8)

A(I)=
∏

C:C∩S(I)�=∅
e
−�̃mixt(C)

|C∩D|
|C|

∏
C:C∩S(I) �=∅

e
−�̃emp(C)

|C∩U |
|C| (4.9)
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and

BV (I) =
∏

C:C∩S(I)�=∅
C∩V c−�=∅

e
�̃mixt(C)

|C∩D|
|C|

∏
C:C∩V c−�=∅

e
�̃mixt(C)

|C∩(V \D)|
|C|

∏
C:C∩S(I)�=∅
C∩V c+�=∅

e
�̃emp(C)

|C∩U |
|C|

∏
C:C∩V c+�=∅

e
�̃emp(C)

|C∩(V \U)|
|C| . (4.10)

In these formula, it is understood that the arguments C of �̃mixt and �̃emp
are, respectively, supports of clusters of mixt-contours and clusters of emp-
contours. These functionals satisfy the bound:

|�̃(C)|�L(C)(κe−α)L(C), (4.11)

where L(C) is the number of n.n. pairs of C (see Section 6).
This property allows us to prove that the limit of F(V ) when M→∞

exists, and that, if we denote by V the infinite cylinder limM→∞ VL,M ,
then one gets actually limM→∞ F(V )

= F(V ) with F(V ) defined as in (4.7)–(4.10). The surface tension then
reads

τmixt,emp = lim
L→∞

F(V )

(2L+1)d−1
. (4.12)

Clearly the term KV /β(2L+1)d−1 tends to 0 in the limit L→∞. Let
us introduce the modified free energy

e−βF
′(V )=

∑

I :supp I⊂V
ω(I)e−p(µ

∗
1,µ

∗
2)|S(I)|A(I). (4.13)

As a consequence of the analysis of Section 7 we shall see that the free
energy F ′(V ) differs from F(V ) only by a term proportional to Ld−2,
thus showing that the surface tension is also given by (4.12) with F(V )

replaced by F ′(V ). To simplify notations, we shall only consider this last
free energy.

In the Solid-On-Solid (SOS) approximation, that we will also con-
sider, the surface tension reads

τSOS
mixt,emp = lim

L→∞
F SOS(V )

(2L+1)d−1
, (4.14)
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where

F SOS(V )=− 1
β

ln
∑

ISOS:supp I⊂V
ω(I)(eµ

∗
1 + eµ∗

2 )−|S(I)|,

where the SOS interfaces belonging to ISOS have no overhangs. This
means that the set of dual bonds (in two–dimensions) or dual plaquettes
(in three–dimensions) of such interface corresponds to the graph of a
function. This approximation may be obtained by adding to the Hamil-
tonian (2.3) the anisotropic interaction

∑vert

〈x,y〉
J ′ [δ(sx,0)(1− δ(sy,0))+ (1− δ(sx,0))δ(sy,0)

]
,

where the sum
∑vert

is over vertical bonds, and then taking, with an
appropriated normalization, the limit J ′ →∞. The coexistence line in that
approximation coincides with the ground states coexistence line, eµ

∗
1 +

eµ
∗
2 =1, so that:

e−βF
SOS(V )=

∑

ISOS:supp I⊂V
ω(I). (4.15)

Let us now define the surface tensions between each species of the mixture
and the vapor. As mentioned in the introduction, whenever either the par-
ticles 1 or the particles 2 are not allowed the system reduces to the usual
Ising model in its lattice gas version. Thus, we introduce the configurations
nV ∈{0,1}V of the lattice gas and the following partition functions

Qα(V ) =
∑

nV ∈{0,1}V
exp


βJα

∑
〈x,y〉⊂V

[nx(1−ny)+ (1−nx)ny ]



∏
x∈∂V

nx,

Qα,0(V ) =
∑

nV ∈{0,1}V
exp



βJα

∑
〈x,y〉⊂V

[nx(1−ny)+ (1−nx)ny ]





×
∏

x∈∂−V
(1−nx)

∏
x∈∂+V

nx

for α=1 and α=2.
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The interfacial tension between the species α= 1,2, and the vapor is
the limit(18,21)

τα,0 = lim
L→∞

lim
M→∞

Fα(V )

(2L+1)d−1
,

where

Fα(V )=− 1
β

ln
Qα,0(V )

Qα(V )
.

It is well known that the ratio Qα,0(V )/Qα(V ) can be expressed as a sum
over interfaces which in this case are connected set of bonds or plaquettes
of the dual lattice(11,12). Extracting the energy of the flat interface, the sys-
tem can be written as a gas of excitations leading to

Fα(V )=Jα(2L+1)d−1 +F ex
α (V ).

In two-dimensions, F ex
α is the free energy of the gas of jumps of the Galla-

votti’s line.(11) In three-dimensions, F ex
α is the free energy of the gas of

walls of the Dobrushin’s interface.(12) In both cases these free energies can
be analyzed by cluster expansion techniques at low temperatures. Namely,
the specific free energies Fα = limL→∞ F ext

α (V )/(2L+ 1)d−1 exist and are
given by convergent expansions in term of the activities e−βJα , giving

βτα,0 =βJα +βFα. (4.16)

In addition

−βFα = 2e−βJα +O(e−2βJα ) for d=2, (4.17)

−βFα = 2e−4βJα +O(e−6βJα ) for d=3. (4.18)

We refer the reader also to refs. 22–24 and references therein for the study
of these expansions. Furthermore, in two-dimensions the surface tension
defined above is known to coincide with the one computed by Onsager.(18)

We thus have an exact expression for τα,0, and for Fα:

βFα = ln tanh(βJα/2) (4.19)

for βJα larger than the critical value ln(1+√
2).
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Similar results hold in the corresponding SOS approximation (see
ref. 25 for the three-dimensional case). We will use τSOS

α,emp and FSOS
α the

surface tensions and free energies in this approximation. In two-dimen-
sions FSOS

α is also exactly known(26) and also given by (4.19), but for all
temperatures:

βFSOS
α = ln tanh(βJα/2) (4.20)

for β�0.

5. MAIN RESULTS

In this section we will give a relationship between the surface tensions
introduced in the previous section.

The leading term of the free energy F ′(V ) corresponds to flat inter-
faces without any decoration. They are those interfaces, for which the set
of n.n. x, y such that x is empty and y is occupied crosses the plane xd =
−1/2, and such that A(I)=1. Let Iflat be the set of flat interfaces and N=
(2L+1)d−1. We have

e−βFflat(V ) ≡
∑

I :supp I⊂V
I∈Iflat

ω(I)e−p(µ
∗
1,µ

∗
2)|S(I)|

=
N∑
n=0

(
N

n

)
e(µ

∗
1−βJ1)ne(µ

∗
1−βJ2)(N−n)e−p(µ

∗
1,µ

∗
2)N

= (c∗1e
−βJ1 + c∗2e−βJ2)N ,

where

c∗1 = eµ∗
1−p(µ∗

1,µ
∗
2), c∗2 = eµ∗

2−p(µ∗
1,µ

∗
2). (5.1)

We will show in Section 7 that the difference F ′(V )−Fflat(V ) can be
expressed as a free energy of a gas of excitations called aggregates. It will
then turns out that the limit

F = lim
L→∞

F ′(V )−Fflat(V )

N
, (5.2)

exists and is given by a convergent expansion at low temperatures, see
(7.17).
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Theorem 3. Assume β is large enough so that 8e(e− 1)κ2e−βJ+5<

1, then the interfacial tensions τmixt,emp, τ1,0 and τ2,0 satisfy the equation:

e−β(τmixt,emp−F)= c∗1e−β(τ1,0−F1)+ c∗2e−β(τ2,0−F2), (5.3)

where

c∗i = eµ∗
i −p(µ∗

1,µ
∗
2), (5.4)

F is the convergent series defined by (7.17):

−βF = c∗1e
−5βJ1 + c∗2e−5βJ2

c∗1e−βJ1 + c∗2e−βJ2
+ (c∗1e

−2βJ1 + c∗2e−2βJ2)4

(c∗1e−βJ1 + c∗2e−βJ2)4
+O(e−5βJ ) (5.5)

in dimension d=3 and

−βF =2
c∗1e

−2βJ1 + c∗2e−2βJ2

c∗1e−βJ1 + c∗2e−βJ2
+O(e−2βJ ) (5.6)

in dimension d=2, and the convergent series Fα satisfies (4.17)–(4.19).

The proof is postponed to Section 7.
Some remarks and comments are in order.
The densities ci are easily related to the c∗i through the relation (see

(3.23) and (3.28)):

c∗i = ci
(eµ

∗
1 + eµ∗

2 )e−pmixt(µ
∗
1,µ

∗
2)

1+ (eµ∗
1 + eµ∗

2 )di
(5.7)

= ci

[
1− (c1e

−βJ1 + c2e
−βJ2

)2d −2dcie−βJi
(
c1e

−βJ1 + c2e
−βJ2

)2d−1

−2(d+1)ci
(
c1e

−βJ1 + c2e
−βJ2

)2d +O(e−(2d+1)βJ )
]
. (5.8)

In the SOS approximation, as mentioned in Section 4, the coexistence
line is given by eµ

∗
1 + eµ∗

1 =1 and the densities of each species in the mix-
ture regime on this line are c1 = eµ∗

1 and c2 = eµ∗
2 . We have

e−βF
SOS
flat (V )≡

∑
I :supp I⊂V
I∈Iflat

ω(I)= (c1e
−βJ1 + c2e

−βJ2)N
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and the equation between the surface tensions reads

e
−β(τSOS

mixt,emp−FSOS)= c1e
−β(τSOS

1,0 −FSOS
1 )+ c2e

−β(τSOS
2,0 −FSOS

2 )
. (5.9)

Here FSOS = limL→∞
F SOS(V )−F SOS

flat (V )

N
: it can be expressed as the series

given by (7.17), but with truncated functional corresponding to the activ-
ities

zSOS(W)= e−βJ1L1(W)−βJ2L2(W)+µ∗
1|S1(W)|+µ∗

2|S2(W)|

and satisfy also relations (5.5) and (5.6) with c∗i replaced by ci .
To find an exact solution for FSOS in two-dimensions seems to be

an interesting problem. Actually, this would give an exact equation for the
surface tensions not restricted to low temperatures.(27)

The method developed here can be extended naturally to finite range
interactions. As an example, we can consider the Hamiltonian (2.3) with
the sum over nearest-neighbors and next nearest-neighbors. In that case
we found that the corresponding surface tensions satisfy, in two-dimen-
sions and at low enough temperatures, the equation

e−β(τmixt,emp−F) = c∗1e
−3βJ1 + c∗2e−3βJ2

= c∗1e
−β(τ1,0−F1)+ c∗2e−β(τ2,0−F2),

where

−βF1 =2e−βJ1 +O(e−2βJ1), −βF2 =2e−βJ2 +O(e−2βJ2)

and

−βF = c∗3
1 e

−7βJ1 + c∗2
1 c

∗
2(e

−6βJ1−J2 + e−5J1−2J2 + e−4J1−3J2)

(c∗1e−3βJ1 + c∗2e−3βJ1)2

+c
∗
1c

∗2
2 (e

−3βJ1−4J2 + e−2J1−5J2 + e−J1−7J2)+ c∗3
2 e

−7βJ2

(c∗1e−3βJ1 + c∗2e−3βJ1)2
+O(e−2βJ )

with c∗i = ci
(
1+O(e−8βJ )

)
.

When the hypothesis (2.2) or (2.7) on the model defined by Hamilto-
nian (2.1) or (2.5) is not satisfied, with J > 0, there are, at low temper-
atures, two phases rich in particles of species 1 or of species 2 as been
proved in ref. 10 for C =0. This can be also shown for C �=0 provided that
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the three quantities in equations (2.6) are positive. Indeed the Hamiltonian
(2.1) and (2.5) can be reduced, up to chemical potential terms, to the form

H =
∑
〈x,y〉

[
J1
(
δ(sx,1)δ(sy,0)+ δ(sx,0)δ(sy,1)

)

+J2
(
δ(sx,2)δ(sy,0)+ δ(sx,0)δ(sy,2)

)

+J
4

(
δ(sx,1)δ(sy,2)+ δ(sx,2)δ(sy,1)

)]
, (5.10)

where J1 = 2J +K + 2C, J1 = 2J +K − 2C, and J are positive constants.
In this situation and with fixed concentration of the species either we are
in one of these two pure phases that coexist with the gaseous phase or in
the coexistence of the three phases. In the later case, there will be segrega-
tion between the three phases and one will observe only the three kinds of
interfaces between these phases. One cannot truly speak in this approach
about a real surface tension of a mixture.

Let us stress that from our Eqs. (5.3) and (5.9), we get obviously
the Guggeinheim relation (1.1) by neglecting the terms exponentially small
with the inverse temperature, i.e. F,F1 and F2. This shows that this rela-
tion provides a good approximation at very low temperatures.

To see the quantitative difference between the above equations, let us
consider a concrete example. Note that when we take only into account
the (exponentially) smallest order corrections in our equations, they reads
(in dimension 3):

τmixt,emp = −kT
a2

ln


c1e

− a2τ1,0
kT

−2e−
4a2τ1,0
kT + (1− c1)e

− a2τ2,0
kT

−2e−
4a2τ2,0
kT




+kT c1e
−(5a2τ1,0)/(kT )+ (1− c1)e

−(5a2τ2,0)/(kT )

c1e
−(a2τ1,0)/(kT )+ (1− c1)e

−(a2τ2,0)/(kT )

+kT
[
c1e

−(2a2τ1,0)/(kT )+ (1− c1)e
−(2a2τ2,0)/(kT )

c1e
−(a2τ1,0)/(kT )+ (1− c1)e

−(a2τ2,0)/(kT )

]4

, (5.11)

where a is the lattice spacing and k the Boltzman constant, while for the
Guggenheim relation, one has

τ
Gugg
mixt,emp =−kT

a2
ln
[
c1e

− a2τ1,0
kT + (1− c1)e

− a2τ2,0
kT

]
. (5.12)



624 De Coninck et al.

Fig. 5. Plot of the surface tension given by (5.11) (solid curve) as function of the concen-
tration c1. The dotted curve corresponds to formula (5.12) and the dotted line to formula
(5.13).

Note also that the simplest form of Eqs. (1.2) and (1.3) reads

τ(1,2)|0 = c1τ1,0 + (1− c1)τ2,0. (5.13)

Figure 5 shows that there is actually a quantitative difference between the
Eqs. (5.11) and (5.12). We have chosen a mixture of water and hexane, i.e.

τ1,0 =0.0724 N / m, τ2,0 =0.01978 N / m, a=3
◦
A, the size of a water mol-

ecule, and the temperature T =300 K.
Finally, notice that when the coupling constants J1 and J2 (or

equivalently the surface tensions τ1,0 and τ2,0) differ appreciably, we get
assuming J1<J2, and neglecting in Eqs. (5.11) and (5.12) the terms expo-
nentially small with respect to the inverse temperature:

τmixt,emp

τ1,0
=1− 1

βJ1
ln(1− c∗2) (5.14)

to be compared with Szyzkowsky’s equation (1.4).
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6. PROOF OF THEOREM 2

Let us first give the proof of relations (3.13)–(3.17).
Let µ(�)= (aνeλ)−L(�), with ν=2νd , a>1, and λ>0, then

∑
���0

µ(�)�L(�0)

∞∑
n=1

e−λna−n� e−λ

a−1
L(�0), (6.1)

where the sum runs over contours � incompatible with a given contour
�0.
The condition νe−(α−λ)ae

1
a−1 � 1 actually ensures that the convergence

condition

∣∣∣z′q(�0)

∣∣∣�
(
eµ(�0)−1

)
exp


−

∑
���0

µ(�)


 (6.2)

of ref. 19 is fulfilled. We then choose a=
√

5+3
2 (that minimizes ae

1
a−1 ) get-

ting by ref. 19 for κ� e(α−λ) the equality (3.13) and

∑
X:X(�)�1

|�q(X)|�µ(�). (6.3)

The invariance of the �q under translations leads to (3.14). On the other
hand the last inequality gives

∑
X:suppX�x

∣∣�q(X)
∣∣ �

∑
�:supp ��x

∑
X:X(�)�1

∣∣�q(X)
∣∣ (6.4)

�
∑

�:supp ��x
µ(�)� e−λ

a0 −1
�κe−α (6.5)

by choosing e−λ = κe−α and taking into account that a0 − 1 � 1; here
the first sum is over all multi-indexes X whose support contains a
given point x. This implies (3.16) and also (3.17) since

∣∣σ(� |�q)
∣∣ �

|∂�|∑X:supp X�x
∣∣�q(X)

∣∣. Note furthermore that one easily gets the bound
(4.11) from relations (6.1) and (6.3)

We shall also gives a bound needed below. Define the diameter of a
contour � as diam � = maxx,y∈X(�) d(x, y) where d(x, y) is the distance
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between the site x and y. Then

∑
X:suppX�x

diam supp X�A

∣∣�q(X)
∣∣�

∑
�:S(�)�x

diam ��A

µ(�)�
∞∑
n�A

e−λna−n�
(
κe−α

)A
. (6.6)

We now turn to the proof of Theorem 2. We put hq =−pq and

aq =hq −min
m

hm. (6.7)

The boundary condition q is called stable if aq = 0. Our first step is to
show that if the boundary condition q is stable then all q-contours are sta-
ble implying that �′

q(�;µ1,µ2) coincides with �q(�;µ1,µ2).
We notice that when aq �1, then the condition

�m(Intm �;µ1,µ2)

�q(Intm �;µ0,µ1)
� e2|∂Intm �| (6.8)

with m �=q for a q-contour � ensures that this contour is stable, provided

e−α ≡ e−βJ+5<
1
κ
.

Indeed by (3.16) gmax −gq is bounded by aq +2κe−α. Since |∂Intm �|
� |L(�)| we get taking into account the Peierls estimate (3.7):

zq(�) = ω(�)e−gmax|S(�)|e(gmax−gq)|S(�)|�m(Intmixt �;µ1,µ2)

�q(Intmixt �;µ1,µ2)

� e−(βJ−5)L(�).

For a volume �, we use diam�= maxx,y∈� d(x, y) to denote its diame-
ter. The following proposition show that all q–contours are stable when-
ever aq =0.

Proposition 1. Assume β is large enough so that e−βJ+5 = e−α <
1

(2d+1)κ , then

(i) if amdiam��1, and aq =0, then

�m(�;µ1,µ2)

�q(�;µ1,µ2)
� eam|�|+2κe−α |∂�|; (6.9)
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(ii) if aq =0, then

�m(�;µ1,µ2)

�q(�;µ1,µ2)
� e3κe−α |∂�|; (6.10)

(iii) if amdiam��1, then

�m̃(�;µ1,µ2)

�m(�;µ1,µ2)
� e(1+5κe−α)|∂�|. (6.11)

The proof is analog to that of Theorem 3.1 in ref. 28 using our previous
estimates. We give it below for the reader’s convenience.

We first introduce the notion of small and large contours. We say that
a m–contour � is small if amdiam��1; it is large if amdiam�>1. We also
define the partition function �small

q (�) which is obtained from �′
q(�) by

replacing the sum over stable contours in (3.9) by a sum over small con-
tours. If we sum instead, only over contours which are at the same time
small and stable, we denote the resulting partition function �′small

q (�).
Finally we will use the shorthand notation �m(�) for �m(�;µ1,µ2).

We will show the three items of the proposition inductively on
diam�.

Thus we assume that (i)–(iii) have already been proved for all volumes
with diam�<k.

Proof of (i) for diam�=k.
For any contour � in �, and any m̃, we have diam Intm̃ ��k−1. We

can use the inductive assumptions (ii) and (iii) that all q-contours and all
m-contours are stable. Therefore

�q(�)

�m(�)
= �′

q(�)

�′
m(�)

. (6.12)

Using the convergence of cluster expansion (3.16) and definition (6.7), one
immediately gets (i).

Proof of (ii) for diam �=k
To control the ratio �m(�)/�q(�), we shall rewrite the partition

function �m(�) using relation (3.1, and 3.2). Consider for a set of com-
patible m-contours in �, the family {�1, . . . , �n}large

ext of its mutually exter-
nal large m-contours. The others contours are small m–contours in Int ≡
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�\∪iV (�i) or any m-contour in Int≡∪iInt�i . Therefore

�m(�)=
∑

{�1,... ,�n}large
ext

�small
m (Ext)

n∏
i=1

ω(�i)�m(Int�i). (6.13)

Dividing and multiplying by
∏n
i=1 e

gmax|S(�i)|�q(Int�i) = �q(Int)
∏n
i=1

egq |S(�i)|, we get

�m(�)

�q(�)
=

∑

{�1,... ,�n}large
ext

�small
m (Ext)�q(Int)

�q(�)

×
n∏
i=1

egq |S(�i)|ω(�i)e−gmaxS(�i)|�m(Int�i)
�q(Int�i)

. (6.14)

Note that all q-contours in � and all small m-contours in � are stable
by the inductive assumptions (i) and (iii), respectively. Therefore the vari-
ous partition functions in the first factor of the right-hand side of (6.14)
are equal to the corresponding truncated partition functions, which can be
controlled by convergent cluster expansion. We get by (3.16)

�small
m (Ext)�q(Int)

�q(�)

n∏
i=1

egq |S(�i)| � e−h
small
m |Ext|+hq |�\Int|

n∏
i=1

egq |S(�i)|

×eκe−α(|∂�|+|∂Int|+|∂Ext|),

where hsmall
m is the free energy obtained from �small

m . Using the facts that
|hq + gq | � κe−α, |S(�)| � |L(�)| and bounding |∂Int| + |∂Ext| by |∂�| +
2d
∑
i L(�i), we find

�small
m (Ext)�q(Int)

�q(�)

n∏
i=1

egq |S(�i)| � e−(h
small
m −hq)|Ext|

×eκe−α [2|∂�|+(1+2d)
∑
i L(�i)]. (6.15)
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Combining this bound with (6.14), the Peierls estimates (3.7), the inductive
assumption (ii), and ∂Int��2dL(�), we get:

�m(�)

�q(�)
� e2κe−α |∂�| ∑

{�1,...,�n}large
ext

e−(h
small
m −hq)|Ext|

n∏
i=1

e−βJ |L(�i)|e[(8d+1)κe−α ]L(�i)

� e2κe−α |∂�| ∑

{�1,...,�n}large
ext

e−(h
small
m −hq)|Ext|

n∏
i=1

e−(α+1)L(�i), (6.16)

where for the last inequality we used the hypothesis (2d+1)κe−α �1 and
α=βJ −5.

At this point we need a technical lemma proved in ref. 17 (see the
proof below).

Lemma 1. Consider the partition function

Z̃(�)=
∑

{�1,...,�n}comp

n∏
i=1

z̃(�i)e
L(�i) (6.17)

of a gas of contours with activities

z̃(�)e|L(�)| � e−α̃L(�)eL(�).

Let −̃s=− lim�↑Zd (1/|�|) ln Z̃(�) be the corresponding free energy. Then

∑
{�1,...,�n}ext

e−a|Ext|
n∏
i=1

K̃(�i)� eκe
−α̃+1|∂�|, (6.18)

where the sum is over contours in � provided

a� s̃, (6.19)

κe−α̃+1 � 1
2d+1

. (6.20)
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To apply this lemma to (6.16) we put

α̃ = α+1, (6.21)

a = hsmall
m −hp=am+hsmall

m −hm (6.22)

and

z̃(S)=
{
e−α̃L(�) if � is large,
0 if � is small,

(6.23)

For κe−α̃+1<1, the Mayer expansion for ln Z̃(�) is convergent. Using the
fact that it only contains large contours (diam�� 1/am for each contour
contributing to ln Z̃(�)) one has (see (6.6)):

s̃�
(
κe−α

) 1
am . (6.24)

Moreover the difference hsmall
m −hm is the free energy of a gas of large con-

tours with again diam�� 1/am and thus again for κe−α̃−1< 1 shares the
same upper bound

∣∣∣hsmall
m −hm

∣∣∣� (κe−α)
1
am . (6.25)

Hence

a− s̃�am−2
(
κe−α

) 1
am . (6.26)

Therefore the assumption a− s̃�0 will be fulfilled if am�2
(
κe−α

) 1
am , i.e.

if (am/2)am �κe−α. This is actually true because the function (a/2)a has a
minimum at a=2/e for which it takes the value e−2/e�0.47 that is greater
than the upper bound 1/(2d+1) required for κe−α.

Applying the lemma (with the value (6.21)) to(6.16) immediately gives
(6.10).

Proof of (iii) for diam �=k.
The inequality (6.11) follows immediately from (6.9), (6.10) , and the

fact that

am|�|�amdiam� |∂�|� |∂�| . (6.27)
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Proof of Lemma 1. For κe−ã+1 < 1, the partition function Z̃(�)
can be controlled by convergent cluster expansion. In particular for the
interior Int=∪iInt�i of a set of external contours {�1, ..., �n}ext we have
the estimate

Z̃(Int)e−̃s|Int| � e−κe−α̃+1|∂Int| �
n∏
i=1

e−2dκe−α̃+1|L(�i)|. (6.28)

Here the first inequality stems from (3.17) and the last from the hypothesis
(6.20). Therefore

∑
{�1,...,�n}ext

e−a|Ext |
n∏
i=1

z̃(�i) �
∑

{�1,...,�n}ext

e−a|Ext|
n∏
i=1

z̃(�i)e
2dκe−α̃+1L(�i)Z̃(Int)ẽs|Int|

� e−̃s|�| ∑
{�1,...,�n}ext

n∏
i=1

z̃(�i)e
(2dκe−α̃+1+̃s)L(�i)Z̃(Int)

� e−̃s|�|Z̃(Int),

where in the last inequality, we used s̃ � κe−α̃+1. This gives (6.18) using
again the estimates (3.17).

This ends the proof of Proposition 1.
We now come back to the proof of Theorem 2. We put µ1(t)=µ1 + t ,

µ2(t)=µ2 + t with eµ1 +eµ2 =1. Then, by definitions (3.9),(3.10) and (6.7),
we have

aemp −amixt = pmixt −pemp = t+ ln(eµ1 + eµ2)

+ lim
�↑Zd

1
|�|

[
ln Zmixt(�)− ln Zemp(�)

]
, (6.29)

where

Zq(�)= e−gq |�|�′
q(�)=

∑
{�1,...,�n}comp

n∏
i=1

z′q(�i). (6.30)

The function t+ ln(eµ1 +eµ2)= t is obviously increasing, negative for t <0,
positive for t > 0, and it intersects the horizontal coordinate axis only at
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one point t=0. The difference amixt −aemp will satisfy the same properties
with the intersecting point slightly changed) provided

1
|�|

∣∣∣∣
∂

∂t
ln Zemp(�)− ∂

∂t
ln Zmixt(�)

∣∣∣∣<1 (6.31)

uniformly in �.
Let us first give an upper bound on the derivative ∂

∂t
z′q(�) of the

truncated activity. By virtue of relations (3.8),(3.6) one gets for every sta-
ble q-contour �, that either ∂

∂t
z′q(�)=0, or:

∣∣∣∣
∂

∂t
z′q(�)

∣∣∣∣ =
∣∣∣∣
∂

∂t
lnω(�)− ∂

∂t
gq(�)+ ∂

∂t
ln
�m(Intm �)
�q(Intm �)

∣∣∣∣z′q(�)

� (1+|Intm �|)z′q(�)� |V (�)|e−α|L(�)|. (6.32)

On the other hand,

∣∣∣∣
1

|�|
∂

∂t
ln Zq(�)

∣∣∣∣�
∑

�:supp��x

∣∣∣∣
∂

∂t
z′q(�)

∣∣∣∣×
∣∣∣∣
Zq(�\ {�})

Zq(�)
∣∣∣∣ . (6.33)

Here the sums are over contours � containing a given point x and

Zq(�\ {�})=
∑∗

{�1,...,�n}comp

z′q(�), (6.34)

where the sum goes over all families {�1, ..., �n}comp compatible with �.
This sum can be bounded using the cluster expansion. Indeed, denoting S
the set of sites at distance less or equal to 1 from the support of �, we
get by (3.13) and (3.17):

Zq(�\ {�})
Zq(�) = exp



−

∑

X:suppX∩S=∅
�q(X)


� exp


|S|

∑
X:suppX�x

∣∣�q(X)
∣∣



� exp
{
(2d+1)|S(�)|κe−α}� exp

{
(2d+1)L(�)κe−α

}
. (6.35)

Inserting this bound in (6.33) and taking into account the inequality (6.32)
and the estimate

|V (�)|� |S(�)|diam�� |S(�)|2 � e|S(�)| � eL(�).
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gives

∣∣∣∣
1

|�|
∂

∂t
ln Zq(�)

∣∣∣∣�
∑

�:supp��x
e−αL(�)+(2d+2)L(�)Ke−α �

∑
n�1

νne−αne2(d+1)κe−αn.

Using that κ � 4.9ν, we get that for 2(d+ 1)κe−α � 1 this last sum is less
than 1/2 . This implies (6.31) ending the proof of Theorem 2.

7. PROOF OF THEOREM 3

Let us first explain the idea of the proof.
In dimension d= 3, the first excitation of a flat interface is obtained

by replacing an empty site of the interface by an occupied one (denote Iup
el

such an interface) or by replacing an occupied site of the interface by an
empty one (denote Idown

el such an interface). In the first case, we have

∑
I :supp I⊂V

supp I=supp I
up
el

ω(I)e−p(µ
∗
1,µ

∗
2)|S(I)|

=
N−1∑
n=0

(
N −1
n

)
e(µ

∗
1−βJ1)ne−(µ

∗
2−βJ2)(N−1−n)

ep(µ
∗
1,µ

∗
2)N

(eµ
∗
1−5βJ1 + eµ∗

2−5βJ2)

= (c∗1e−βJ1 + c∗2e−βJ2)N
c∗1e

−5βJ1 + c∗2e−5βJ2

c∗1e−βJ1 + c∗2e−βJ2
.

In the second case we have

∑
I :supp I⊂V

supp I=supp Idown
el

ω(I)e−p(µ
∗
1,µ

∗
2)|S(I)|

=
N−4∑
n=0

(
N−4
n

)
e(µ

∗
1−βJ1)ne−(µ

∗
2−βJ2)(N−4−n)

ep(µ
∗
1,µ

∗
2)N

×
4∑

m=1

(
4
m

)
e2m(µ∗

1−βJ1)e−(8−2m)(µ∗
2−βJ2)

= (c∗1e−βJ1 + c∗2e−βJ2)N
(c∗1e

−2βJ1 + c∗2e−2βJ2)4

(c∗1e−βJ1 + c∗2e−βJ2)4
.
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In dimension d = 2, the first excitation of a flat interface is obtained by
splitting it into a left part and a right part and then shift the right part
by a height 1 or −1 (denote Iel such an interface). Then, we have

∑
I :supp I⊂V

supp I=supp Iel

ω(I)e−p(µ
∗
1,µ

∗
2)|S(I)|

=
N−1∑
n=0

(
N −m
n

)
e(µ

∗
1−βJ1)ne−(µ

∗
2−βJ2)(N−m−1)

ep(µ
∗
1,µ

∗
2)N

(eµ
∗
1−2βJ1 + eµ∗

2−2βJ2)

= (c∗1e−βJ1 + c∗2e−J2)N
c∗1e

−2βJ1 + c∗2e−2βJ2

c∗1e−βJ1 + c∗2e−βJ2
.

Note, that in fact such modified interfaces are not allowed with the
boundary condition χmixt,emp. However, one can lightly modify this bound-
ary condition to allow such interface, leaving the resulting surface tension
unchanged.

To study the difference F ′(V )−Fflat(V ), we shall express the quantity

(c∗1e
−βJ1 + c∗2e−βJ2)−N

∑

I :supp I⊂V
ω(I)e−p(µ

∗
1,µ

∗
2)|S(I)|

as the partition function of a gas of excitations to be called walls or more
generally aggregates with small activities at low enough temperature.

This will allow us to exponentiate this quantity and to obtained that
the difference (F ′(V )−F ′

flat(V ))/N can be expressed as a convergent series
(up to a boundary term) whose leading terms are:

− 1
β

c∗1e
−5βJ1 + c∗2e−5βJ2

c∗1e−βJ1 + c∗2e−βJ2
− 1
β

(c∗1e
−2βJ1 + c∗2e−2βJ2)4

(c∗1e−βJ1 + c∗2e−βJ2)4

in three-dimensions and

− 2
β

c∗1e
−2βJ1 + c∗2e−2βJ2

c∗1e−βJ1 + c∗2e−βJ2

in two-dimensions.
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7.1. Decorated Interfaces

The first step is to express the quantity A(I) defined by (4.9) in a
form suitable for our purpose. We write for each support of the mixt or
emp cluster C in A(I):

e
−�̃mixt(C)

|C∩D|
|C| = 1+ (e−�̃mixt(C)

|C∩D|
|C| −1)≡1+ ψ̃mixt(C),

e
−�̃emp(C)

|C∩U |
|C| = 1+ (e−�̃emp(C)

|C∩U |
|C| −1)≡1+ ψ̃emp(C).

Define for a connected family A of support of clusters:

ψ̃mixt(A)=
∏
C∈A

ψ̃mixt(C), ψ̃emp(A)=
∏
C∈A

ψ̃emp(A).

Then

A(I) =
∏

C∩S(I)�=∅
e
−�̃mixt(C)

|C∩D|
|C|

∏
C′∩S(I)�=∅

e
−�̃emp(C

′) |C′∩U |
|C|

=
∑

{A1,...,An}comp:Ai∩S(I)�=∅

n∏
i=1

ψ̃mixt(Ai)
∑

{A1,...,Am}comp:Ai∩S(I) �=∅

m∏
j=1

ψ̃emp(Aj ),

where the sums are over compatible families of connected sets Ai of sup-
port of clusters touching the interface. As it was done for multi-indexes,
it is convenient to sum all A with the same support say D to be called
decoration. We define the weight

ψmixt(D) =
∑

A:suppA=D
ψ̃mixt(A)=

∑
{C1,...,Cn}:∪Ci=D

n∏
i=1

ψ̃mixt(Ci), (7.1)

ψemp(D) =
∑

A:suppA=D
ψ̃emp(A)=

∑
{C1,...,Cn}:∪Ci=D

n∏
i=1

ψ̃emp(Ci). (7.2)

This leads to

e−βF
′(V ) =

∑

I :supp I⊂V
ω(I)e−p(µ

∗
1,µ

∗
2)|S(I)|

∑
{D1,...,Dn}comp:

Di∩S(I) �=∅,Di∩D �=∅

n∏
i=1

ψmixt(Di )

×
∑

{D1,...,Dm}comp:
Di∩S(I)�=∅,Di∩U �=∅

m∏
j=1

ψemp(Dj ), (7.3)
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where the sums are over compatible families of decorations touching the
interface.

We define a decorated interface as a triplet Ide = {I,Dmixt,Demp},
where I is an interface, Dmixt is a collection of mixt-decorations touch-
ing the interface and Demp is a collection of emp-decorations touching the
interface.

The weights of decorations may be controlled with the inequali-

ties |e−�̃mixt(C)
|C∩D|

|C| − 1| � (e− 1)|�̃mixt(C)| and |e−�̃emp(D) |C∩U |
|C| − 1| � (e−

1)|�̃emp(D)|. Together with (4.11), this implies the bounds (see ref. 29):

|ψmixt(D)| � (8e(e−1)κe−α)L(D), (7.4)

|ψemp(D)| � (8e(e−1)κe−α)L(D). (7.5)

7.2. Walls and Aggregates

We now introduce the notion of walls and aggregates by the following
definitions.

Consider a decorated interface Ide = {I,Dmixt,Demp}. Let �0 denote
the horizontal hyper-plane xd =0 and let π denote the projection parallel
to the vertical axis on this hyper-plane: π(x1, ..., xd)= (x1, ..., xd−1), π(A)=
∪x∈Aπ(x). A pair

{
sx, sy

}
of the interface I is called correct if

(1) π(x)=π(y) (the bond xy is vertical);

(2) there is no other pair pairs
{
sx′ , sy′

}
of the interface such that

π(x′)=π(x);
(3) there are no decorations such that π(D)⊃π(x).

The connected components of the set of correct pairs are called ceilings
and denoted C. The connected components of the set of noncorrect pairs
are called walls (see Fig. 6).

For a wall W , we use Sα(W) to denote the set of sites for which
sx = α. The set supp W = S0(W)∪ S1(W)∪ S2(W) is called support of the
wall W . As for the contours and the interfaces, we will also use S(W)=
S1(W) ∪ S2(W) to denote the set of occupied sites of the wall, L1(W)

(respectively L2(W)) to denote the number of nearest-neighbor pairs 〈x, y〉
such that sx = 1 and sy = 0 (respectively, sx = 2 and sy = 0) and L(W)=
L1(W)+L2(W).

Denote further W(I ) the set of walls of the interface I .
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Fig. 6. The walls corresponding to the interface of Fig. 4.

The union ∪W∈W(I )supp W ∪D∈Ide D split into maximal connected
components called aggregates. Namely, an aggregate w of a decorated
interface is a family

w={W1, ...,Wn;D1, ...,Dm}

such that the set ∪n
i=1supp Wi ∪mj=1 Dj is connected.

A collection of aggregates {w1, . . . ,wn} is called admissible if there
exists a decorated interface Ide such that w1, . . . ,wn are the aggregates of
Ide.

Here comes a difference for definitions between dimensions 2 and 3.
In three dimensions an aggregate is called a standard aggregate, (or

aggregate in standard position), if there exits a decorated interface Ide

such that w is the unique aggregate of Ide. To any aggregate w, we can
associate a unique standard aggregate which is just a translate of w. In
this way, one can associate to any admissible collection of aggregates
a unique collection of standard aggregates. Such collections are called
admissible collections of standard aggregates. To an admissible collection
of standard aggregates we can associate in a unique way an admissible col-
lection of aggregates.

7.3. Expansions

With these definitions and notations, one gets from (7.3), the follow-
ing expansion

e−βF
′(V )= (c∗1e−βJ1 + c∗2e−βJ2)N

∑
{w1,... ,wn}adm

n∏
i=1

z(wi), (7.6)
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where the sum is over admissible collections of standard aggregates and
the activities of aggregates are given by

z(w)=
∏
W∈w

e−βJ1L1(W)−βJ2L2(W)+µ∗
1|S1(W)|+µ∗

2|S2(W)|

ep(µ
∗
1,µ

∗
2)|S(W)|(c∗1e−βJ1 + c∗2e−βJ2)|π(W)|

∏
D∈w

ψ(D). (7.7)

Here ψ(D)=ψmixt(D) for the mixt-decorations and ψ(D)=ψemp(D) for
the emp-decorations.

In two-dimensions we proceed differently. For an aggregate w, we
consider the ceiling components to the left and to the right of w, respec-
tively, denoted C(L) and C(R). Let h(L) (respectively, h(R)) be the second
coordinate of any empty site of C(L) (respectively, C(R)). We define the
position p(w) of th aggregate w as p(w) = h(L) and the height of the
aggregate w as h(w) = h(R) − h(L). An aggregate w is now called stan-
dard aggregate (or aggregate in standard position) if p(w)= 0. One obvi-
ously can associate to any aggregate an aggregate in standard position and
to any admissible collection of aggregates a unique collection of standard
aggregates. As before such collections are called admissible collections of
standard aggregates and to an admissible collection of standard aggregates
we can associate a unique admissible collection of aggregates.

For an admissible collection of aggregates {w′
1, . . . ,w

′
n}adm, one has

the constraint
∑n
i=1 h(w

′
i ) = 0. If we let, for i = 1, . . . , n, wi denote

the standard aggregates corresponding to w′
i , this constraint reads also∑n

i=1 h(wi)=0. From (7.3), we then get:

e−βF
′(V )= (c∗1e−βJ1 + c∗2e−βJ2)N

∑
{w1,... ,wn}adm

n∏
i=1

z(wi)δ
( n∑
i=1

h(wi),0
)
,(7.8)

where the activities z(w) of aggregates are also given by (7.7).
We now introduce the notion of elementary walls which are the walls

corresponding to the elementary interfaces mentioned in the beginning of
this section.

In two-dimensions, an elementary wall Wel is a wall that contains two
pairs

{
sx, sy

}
and {sx, sz} such that the site x is occupied, the sites y and

z are empty, y is above x and z is to the left or to the right of x.
The activity of such a wall are easily computed and we have

∑
Wel:suppWel={x,y,z}

z(Wel)=
c∗1e

−2βJ1 + c∗2e−2βJ2

c∗1e−βJ1 + c∗2e−βJ2
. (7.9)
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In three-dimensions, we call elementary wall, either a wall (correspond-
ing to the elementary interface Iup

el ) that contains four pairs
{
sx, sxi

}
, i=

1, . . . ,4, such that the site x is occupied, the sites xi are empty and all the
sites leave on the plane x3 =0, or a wall (corresponding to the elementary
interface I

up
down) that contains eight pairs

{
sx, sxi

}
,
{
sxi , syi

}
, i = 1, . . . ,4,

such that the sites x and zi are empty, the sites yi are occupied, the sites x
and xi leaves on the plane x3 =−1, the sites yi leaves on the plane x3 =0.

In the first case we have

∑
Wel:suppWel={x,x1,x2,x3,x4}

z(wel)=
c∗1e

−5βJ1 + c∗2e−5βJ2

c∗1e−βJ1 + c∗2e−βJ2
, (7.10)

while in the second case

∑
Wel:suppWel={x,x1,x2,x3,x4,y1,y2,y3,y4}

z(wel)=
(c∗1e

−2βJ1 + c∗2e−2βJ2)4

(c∗1e−βJ1 + c∗2e−βJ2)4
. (7.11)

For nonelementary walls and aggregates, the activities (7.7) may be
bounded as

z(w) � (age
−βJ )L(w)

(c∗1e−βJ1 + c∗2e−βJ2)|π(w)|
, (7.12)

∑
w:L(w)=L

z(w) � (age
−βJ )L

(c∗1e−βJ1 + c∗2e−βJ2)|π(w)|
, (7.13)

where

ag =
{

8e(e−1)κe−αeβJ if L(w)�2d,
1 otherwise.

This allows to exponentiate the partitions functions of the gas of aggre-
gates in the RHS of (7.6) and (7.8), for low enough temperatures. We
define multi-indexes Y corresponding to aggregates as function from the
set of aggregates into the set of non negative integers, and we let supp Y =
∪w:Y (w)�1supp w. The truncated functional corresponding to the activities
z is given by

�(w)= a(Y )∏
w Y (w)!

∏
w

z(w)Y(w), (7.14)
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where the factor a(Y ) is defined as in (3.12). Then

∑
{w1,... ,wn}adm

n∏
i=1

z(wi)= exp
{ ∑

Y :supp Y⊂V
�(Y )

}
= e−βNF+σ(V |�) (7.15)

in three dimensions and
∑

{w1,... ,wn}adm

n∏
i=1

z(wi)δ
( n∑
i=1

h(wi),0
)

= Pr
{ n∑
i=1

h(wi)=0
}

exp
{ ∑

Y :supp Y⊂V
�(Y )

}

= Pr
{ n∑
i=1

h(wi)=0
}
e−βNF+σ(V |�) (7.16)

in two dimensions. Here

−βF =
∑

Y :suppY�0

�(Y)

|supp Y ∩�0|
, (7.17)

σ(V |�)=−
∑

Y :supp Y∩V c �=∅
�(Y)

|supp Y ∩π(V )|
|supp Y ∩�0|

(7.18)

and

Pr
{ n∑
i=1

h(wi)=0
}

=
∑

{w1,... ,wn}adm

∏n
i=1 z(wi)δ

(∑n
i=1 h(wi),0

)
∑

{w1,... ,wn}adm

∏n
i=1 z(wi)

.

(7.19)

The series (7.17) converges whenever 8e(e−1)κ2e−α <1. This can be seen
by verifying the convergence condition (6.2) with the activities z(w) and
with the contours replaced by aggregates.

Notice that the multi-indexes involved in the sum of (7.18) intersects
both π(V ) and V

c = Z
d \ V . Thus at low temperatures, this sum can be

bounded by Ld−2 times a constant so that this term will give no contri-
bution to the surface tension in the thermodynamic limit. In addition, the
probability Pr{∑n

i=1 h(wi)= 0}, may be controlled by known techniques
(see e.g. refs. 11, 30–32) and

lim
L→∞

(1/N) ln Pr

{
n∑
i=1

h(wi)=0

}
=0.
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Hence, by taking the thermodynamic limit L→∞ in Eqs. (7.6) and (7.8)
we obtain:

e−β(τmixt,emp−F)= c∗1e−βJ1 + c∗2e−βJ2 . (7.20)

Whenever a multi-index Y contains only one aggregate w (Y (w)= 1 and
Y (w′) = 0 for w′ �= w) one has �(Y) = z(w). The leading terms of F
are then obtained with the help of relations (7.9)–(7.11). This gives the
expressions (5.5) and (5.6). Taking furthermore into account the expres-
sion (4.16) ends the proof of the theorem.
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